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Abstract

An important component of iterative, block ciphers is the key schedule.
In most ciphers, a master key of speci�ed length is manipulated to create
round subkeys. This manipulation is known as the key schedule. A strong
key schedule means a cipher will be more resistant to various forms of
attacks, such as di�erential and linear cryptanalysis. In this paper, the
Advanced Encryption Standard(AES) candidates are classi�ed according
to their key schedules.

1 The Classi�cation Schedule

The most powerful methods of analysis of iterative block ciphers such as the
Data Encryption Standard(DES) [4] are attacks which aim to reveal round sub-
keys. These methods include di�erential [5] and linear cryptanalysis [9].

In [1], the authors introduced a new classi�cation scheme for iterative block
ciphers based on their key schedules. In essence, this scheme creates two cate-
gories of ciphers based on whether or not knowledge of a round subkey generated
by the key schedule reveals any information about other round subkeys or the
master key. Those that do, fall into Category 1 and those that do not, fall into
Category 2. Each of these categories is further subdivided into three Types, A,
B and C.

A Category 1, Type A cipher(1A) is one in which all bits of the master key
are used in each round, and hence knowledge of a round subkey yields all bits
of the master key and all other round subkeys. The cipher NDS [3] is such an
example. At the other end of the scale, 2C ciphers are those in which each
round subkey is generated independently, and the length of the master key is
the sum of the lengths of all the round subkeys. The cipher DESI(DES with
independent subkeys) [5] is an example.

A 1B cipher is one where knowledge of a round subkey gives some, but not
all bits of the master key or other round subkeys. DES is an example. A 1C
cipher is one in which knowledge of a round subkey yields bits of other round
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subkeys or the master key after some simple arithmetic operations or function
inversions. SAFER K-64 [6] is an example.

In Category 2, knowledge of a round subkey does not easily reveal informa-
tion about other round subkeys or the master key. A 2A cipher is one in which
not all bits of the master key are used to create each round subkey. In these
ciphers, certain master keys are guaranteed to produce at least two identical
round keys. A cipher such as CAST-128 [7] is an example. In other words, the
entropy of the round subkeys is not maximised. A 2B cipher is one in which
all master key bits are used in the determination of all round subkeys, thus
maximising the entropy of the subkeys. An example is Blow�sh [8].

The most secure schedule classi�cation is 2C. However, this may lead to un-
manageably large master keys for ciphers whose security cannot hope to match
what is naively suggested by the key length. Further, export restrictions on
cryptographic materials often limit the size of the key. For these reasons, the
best we can hope for is to mimic 2C schedules as closely as possible, with the
next strongest classi�cation, 2B.

2 Classi�cation of AES Candidates

In this section, all the AES candidates are classi�ed according to the key sched-
ule classi�cation described in the previous section, and the justi�cation for their
placement in a certain category presented. Although many of these candidates
permit parameter values outside the scope of the AES standard, the analysis
presented below will assume a 128-bit block size and a 128-bit, 192-bit or 256-bit
master key. The analysis of each of the AES candidates will assume the 256-
bit master key option and comments will be made on the other two master key
options only where the master key length has rami�cations for the classi�cation.

For each of the AES ciphers, an outline of the key schedule will be presented
and the following two questions posed.
1. Given knowlege of all the bits of a round subkey, does this reveal any bits of
other round subkeys or the master key?
2. Do all round subkeys depend on all bits of the master key?

The answer to the �rst question will place the cipher in either Category 1
or 2. The answer to the second question will determine whether the Category
2 ciphers are Type A or B. Note that no AES candidate is Category 2, Type
C. The results of the classi�cation appear in Table 1. The justi�cation for the
classi�cation of each cipher according to this scheme is presented below. The
description of the AES candidates was obtained from [2].

CAST-256

The 256-bit master key can be described as eight, 32-bit words, b00b
0
1 � � � b

0
7. By

setting low order bytes to zero, other master key lengths can be obtained. For
example, if b06 and b07 are set to zero, the master key has length one hundred
and ninety-two bits.

To determine the j'th round subkey each bj�1i is modi�ed as follows:

b
j
i = b

j�1
i � f(bi+1(mod 8); cj ; dj); 0 � i � 7; 1 � j � 12

where f is one of three functions used in the cipher, and cj and dj are determin-
istic constants. The round subkey is, in fact, a key pair (kjr ; k

j
m). Key k

j
r is the
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Type 1A Type 1B Type 1C Type 2A Type 2B Type 2C

MAGENTA CRYPTON DFC CAST-256

DEAL E2

Rijndael FROG

SAFER+ HPC

LOKI97

MARS

RC6

Serpent

Two�sh

Table 1: Classi�cation of Key Schedules

concatenation of �ve least signi�cant bits(LSB) of each of the modi�ed words
b
j
0; b

j
2; b

j
4 and b

j
6 while k

j
m is the concatenation of modi�ed words bj7; b

j
5; b

j
3 and b

j
1.

Knowing the round subkey key pair (kjr ; k
j
m) gives knowledge of words b

j
7; b

j
5; b

j
3

and b
j
1 as well as the �ve LSB of each of bj0; b

j
2; b

j
4 and b

j
6. This is not enough

information to determine the previous round subkey. Hence CAST-256 is a
Type 2 cipher. However, it is worth pointing out, that if the remaining unknown
bits of bj0; b

j
2; b

j
4 and b

j
6 can be determined, then all previous round subkeys and

the master key can be found.
To generate the subkey pair, (kjr ; k

j
m), all words b

j
0 to b

j
7 are used. As these

words are dependent on all the original master key words, subkey pairs are de-
pendent on all master key words. This leads to the conclusion that CAST-256
is a 2B cipher.

CRYPTON

The master key, if not two hundred and �fty-six bits, is prepended by ze-
ros to make it so. Using a mixture of linear and non-linear transformations,
eight, 32-bit expanded keys, E0; E1 � � � ; E7 are produced from the original mas-
ter key. All subkeys are two hundred and �fty-six bits, the �rst and second
subkeys respectively being, K0 = (K3;K2;K1;K0) = (E0; E1; E2; E3) and
K1 = (K7;K6;K5;K4) = (E4; E5; E6; E7). Subsequent even round subkeys are
given by, K2i+2 = (K8i+11;K8i+10;K8i+9;K8i+8); 0 � i � 5 and odd round
subkeys are given by K2j+3 = (K8j+15;K8j+14;K8j+13;K8j+12); 0 � j � 4.
Now,

K8i+8 = K8i � (8i); i 2 f0; 2; 4g

K8i+8 = RCi �K8i; i 2 f1; 3; 5g

K8i+9 = RCi �K8i+1; i 2 f0; 2; 4g

K8i+9 = K8i+1 � (3i2 � 20i+ 41); i 2 f1; 3; 5g

K8i+10 = K8i+2 � (�3i2 + 10i+ 16); i 2 f0; 2; 4g

K8i+10 = RCi �K8i+2; i 2 f1; 3; 5g

K8i+11 = RCi �K8i+3; i 2 f0; 2; 4g

K8i+11 = K8i+3 � (4i+ 4); i 2 f1; 3; 5g

K8j+12 = RCj �K8j+4; j 2 f0; 2; 4g
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K8j+12 = K8j+4 � (4j + 4); j 2 f1; 3g

K8j+13 = K8j+5 � (�3j2 + 10j + 16); j 2 f0; 2; 4g

K8j+13 = RCj �K8j+5; j 2 f1; 3g

K8j+14 = RCj �K8j+6; j 2 f0; 2; 4g

K8j+14 = K8j+6 � (4j + 12); j 2 f1; 3g

K8j+15 = K8j+7 � (3j2 � 14j + 24); j 2 f0; 2; 4g

K8j+15 = RCj �K8j+7; j 2 f1; 3g

where RCx is a known constant and x� y is a known left shift of x by y bits.
Knowing even round subkey (K8i+11;K8i+10;K8i+9;K8i+8) means that the

following can be shown true by undoing the above equations, as follows.

K8i = K8i+8 � (8i); i 2 f0; 2; 4g

K8i = RCi �K8i+8; i 2 f1; 3; 5g

K8i+1 = RCi �K8i+9; i 2 f0; 2; 4g

K8i+1 = K8i+9 � (3i2 � 20i+ 41); i 2 f1; 3; 5g

K8i+2 = K8i+10 � (�3i2 + 10i+ 16); i 2 f0; 2; 4g

K8i+2 = RCi �K8i+10; i 2 f1; 3; 5g

K8i+3 = RCi �K8i+11; i 2 f0; 2; 4g

K8i+3 = K8i+11 � (4i+ 4); i 2 f1; 3; 5g

Thus, the previous even round subkey is easily determined. A similar argument
applies to odd round subkeys. It follows that knowing one even/odd round
subkey enables all previous even/odd round subkeys to be determined by sim-
ple arithmetic operations. It is also worth noting that by using exactly the
same arguments, knowledge of an even/odd round subkey enables all subse-
quent even/odd round subkeys to be determined. Hence CRYPTON is a 1C
cipher.

DEAL

The key schedule of DEAL is created from two, three or four, 64-bit DES keys,
corresponding to 128-bit, 192-bit and 256-bit master keys. The 128-bit and 192-
bit master keys are used in six rounds of DEAL, while the 256-bit version uses
eight rounds. In all three cases, the creation of the round subkeys is essentially
identical.

The eight round subkeys are generated from four independent master keys,
designated K1;K2;K3 and K4, as follows.

RK1 = DESEK(K1)

RK2 = DESEK(K2 �RK1)

RK3 = DESEK(K3 �RK2)

RK4 = DESEK(K4 �RK3)

RK5 = DESEK(K1 � f1g �RK4)

RK6 = DESEK(K2 � f2g �RK5)

RK7 = DESEK(K3 � f4g �RK6)

RK8 = DESEK(K4 � f8g �RK7)
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Note that fig denotes the representation of i as a 64-bit string and DESEK(X)
represents the encryption of X using DES with key K which is �xed and known.

Knowing one value of RKi; i 2 f2; 3; 4; 5; 6; 7; 8g does not immediately yield
any bits of other subkeys or the master keys despite the fact that the decryption
DESDK(RKi) can easily be performed since K is known. On the other hand,
knowledge of RK1 easily yields the master key K1, since K1 = DESDK(RK1).
Hence RK1 is much weaker than the other subkeys and puts DEAL in the 1C
classi�cation.

Further, RK1 depends only on master key K1, RK2 depends only on master
keys K1 and K2, and RK3 depends only on master keys K1;K2 and K3. The
other RKi's depend on all four master keys. Hence, not all subkeys depend on
all bits of the master key.

If the known key K is replaced by K1;K2, K3 or K4 then this would elim-
inate the weak RK1 and the cipher would fall into the 2A category. Another
alternative would be to let K = f(K1;K2;K3;K4) where f is a one way func-
tion(OWF) and this would put DEAL into the 2B category.

Decorrelated Fast Cipher-DFC

The master keyK is initially padded on the right with a 256-bit known constant,
C0. The result is then truncated to form padded master key KC , so that what
remains is two hundred and �fty-six bits long. This means that if K is one
hundred and twenty-eight bits then only the one hundred and twenty-eight most
signi�cant bits(MSB) of C0 are used to form KC . Similarly, if K is one hundred
and ninety-two bits, the sixty-four MSB of C0 are used. Finally, if K is two
hundred and �fty-six bits, no bits of C0 are required.

At this point, KC is divided into eight, 32-bit strings such that KC =
K1
C jK

2
C j � � � jK

8
C . Note that X jY means X concatenated with Y .

Now the following are de�ned.

OAP1 = K1
C jK

8
C

OBP1 = K5
C jK

4
C

EAP1 = K2
C jK

7
C

EBP1 = K6
C jK

3
C

and for i = 2; 3 and 4

OAPi = OAP1 � Ci
1

OBPi = OBP1 � Ci
2

EAPi = EAP1 � Ci
1

EBPi = EBP1 � Ci
2

where Ci
1 and Ci

2 are known constants.
Now de�ne

EF1(K) = (F1jF2jF3jF4)

where Fi = OAPijOBPi. Similarly, de�ne

EF2(K) = (f1jf2jf3jf4)

where fi = EAPijEBPi. Now de�ne RK0 = 0 and create round subkeys
RKi; 0 � i � 8, as follows.
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RKi =

�
DFCEF1(K)(RKi�1) if i is odd
DFCEF2(K)(RKi�1) if i is even,

where DFCEFi(K)(X) means encrypt X using key EFi(K) in the DFC cipher.
Now, knowledge of RKi gives no bits of any other round subkeys unless

the encryption process can be reversed. On the other hand, the generation of
RKi; i odd involves only EF1(K) which in turn involves Fi; i 2 f1; 2; 3; 4g. Now
Fi involves only OAPi and OBPi. These in turn involve only K1

C ; K
4
C ; K

5
C

and K8
C , and not all bits of KC or indeed K. A similar scenario applies for

RKi; i even. Thus, not all subkeys depend on on all bits of the master key.
Hence, DFC is a Category 2, Type A cipher.

E2

De�ne a 64-bit constant C. If the length of the master key, K, is one hundred
and twenty-eight bits, considered as the concatenation of K1 and K2, then pass
C through a given set of S-boxes three times to produce the 64-bit value K3

and then a fourth time to produce 64-bit K4. In this process, the output of
the S-boxes on each pass becomes the input for the next pass. If a 192-bit
master key is used, considered as the concatenation of K1; K2 and K3, repeat
the above process to produce K4. If a 256-bit master key is in use then C

is not processed as above. Let the key resulting from the above procedure be
KA = K1jK2jK3jK4. The round subkeys are then formed as follows.

Firstly, KA and C are put into a function G used in the cipher such that the
output (L0; (Z0; C0)) = G((K1;K2;K3;K4); C) whereL0 = (U1; U2; U3; U4); Z0 =
(Y1; Y2; Y3; Y4), and C0 = V , and for i = 1; 2; 3; 4

Yi = f(Ki)

Ui = f(Ui�1)� Yi and U0 = C

V = U4

where f is a function used in the cipher. Note that Ui; Yi and V are all 64-bit
values.

For i = 0; 1; � � � ; 7 de�ne

(Li+1; (Zi+1; Ci+1)) = G(Yi; Ci) (1)

Li+1 = (l4i; l4i+1; l4i+2; l4i+3)

Next i
where li is a 64-bit block.

For i = 1; 2; � � � ; 31 de�ne
li = (t0i ; t

1
i ; � � � ; t

7
i )

Next i
Each 128-bit subkey is now generated as follows.

For i = 0; 1; � � � ; 15,

ki+1 = (t
<i=2>
0+(i mod 2); t

<i=2>
2+(i mod 2); � � � ; t

<i=2>
30+(i mod 2))

Next i
where < x > means the greatest integer � x.

Knowledge of subkey ki, i even, yields only eight bits out of a possible �fty-
six from each of l2j+1; j = 0; 1; � � � ; 15 and hence only sixteen bits out of a

6



possible two hundred and �fty six bits of each Li. In any Li, only the bits
involved in ki are known, and these do not reveal any of the other bits of the
Li's involved with other round subkeys. A similar argument applies when ki is
known and i is odd. Further, there is no simple way to invert equation 1 which
is required to track back to the master key. Thus, knowledge of a round subkey
yields no bits of other round subkeys or the master key.

An examination of the way L1 is constructed will show that it depends on
all master key bits and hence all subsequent Li's depend on L1. Since round
subkey i depends on Li, it follows that all round subkeys depend on L1 and
hence on all bits of the master key.

Now L1 = G(Z0; C0), that is G((Y1; Y2; Y3; Y4); U4). As well,
U4 = f(U3) � f(K4); U3 = f(U2) � f(K3); U2 = f(U1) � f(K2) and U1 =
f(C) � f(K1). Thus, U4 depends on all bits of the master key. Now L1 =
(U 0

1; U
0

2; U
0

3; U
0

4) where U
0

1 = f(U4) � f(Y1). Since U4 depends on all bits of the
master key so does U 0

1 and since U 0

i depends on U
0

i�1, L1 depends on all bits of
the master key. All the Li's contribute to the determination of subkey one, so
subkey one depends on all bits of the master key.

Now Li depends on Yi�1 which in turn depends on Li�1, so Li depends on
Li�1 and hence on L1 and all bits of the master key. The conclusion is that E2
is a 2B cipher.

FROG

The master key, K, in this cipher is essentially hashed to produce a 2304-byte
valid internal key, KIV . KIV can be thought of as the concatenation eight,
288-byte round subkeys. Each of these subkeys has three records, and each of
these records is used in a di�erent way to encrypt the plaintext. The hashing
process begins by concatenating copies of the master key until a 2304-byte array
has been produced. The elements of this array are then XOR'd with a randomly
generated, but known constant. This unformatted array is then formatted so
that the resulting array is a preliminary version of the KIV . This formatting
is necessary so that the three records mentioned earlier achieve rapid di�usion
and confusion. The formatted array is then encrypted by the FROG algorithm
itself to further the random appearance of the subkeys. This encrypted output
is again formatted to satisfy the reqiurements of the subkey records.

Knowledge of a round subkey does not reveal any bits of other round subkeys,
since the 288-byte blocks of KIV which determine each subkey are generated at
the same time and are essentially independent. Thus the FROG cipher belongs
in Category 2, Type B.

Hasty Pudding Cipher-HPC

Assuming a 256-bit master key, K, divide it into four, 64-bit words, K0;K1;K2

and K3. Now construct a 256-element array, KX , each element, a 64-bit word.
The �rst three elements, KX [0];KX [1] and KX [2] are respectively initialised
to known constants c0; c1 and c2. The remaining elements of the array are
constructed as follows.

For i = 3; 4; � � � ; 255

KX [i] = KX [i� 1] + (KX [i� 2]�KX [i� 3]� 23�KX [i� 3]� 41)

Next i,
where x� y and x� y are respectively quantity x right shifted/left shifted by
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y bits. Master key K is now introduced into KX as follows.
For i = 0; 1; � � � ; 127

KX [i] = KX [i]�Ki mod 4

Next i
The resulting elements are then stirred as follows.
State variables, sj ; j = 0; 1; � � � ; 7 are initialised respectively to KX [248+ j]

and the following series of steps are performed in each of three passes over the
array KX .

For each KX [i]; i = 0; 1; � � � ; 255

s0 = (KX [i]�KX [(i+ 1) ^ 255]) +KX [s0 ^ 255]

s1 = s1 + s0

s3 = s3 � s2

s5 = s5 � s4

s7 = s7 � s6

s3 = s3 + (s0 SL 13)

s4 = s4 � (s1 SL 11)

s5 = s5 � (s3 SL (s1 ^ 31))

s6 = s6 + (s2 SR 17)

s7 = s7 _ (s3 + s4)

s2 = s2 � s5

s0 = s0 � (s6 � i)

s1 = s1 + c0

s2 = s2 + (s7 SR j)

s2 = s2 � s1

s4 = s4 � s3

s6 = s6 � s5

s0 = s0 + s7

KX [i] = s2 + s6

Note that the operations + and � are performed modulo 264, ^ means
logical and, _ is logical or, SR and SL are right and left shifts respectively, and
j = 0; 1; 2 represents the pass number over the array KX .

Suppose KX [i] is known. From the last line in the set of steps above, s2+s6
is known. However, there is no obvious way to determine either s2 or s6. Even
if these were known, the nature of the stirring process means that it is not
invertible, so no bits of the master key or other round subkeys can be obtained
from a knowledge of KX [i].

Now si; i = 0; 1; � � � ; 7 contains two copies of the master key arranged such
that any four si values, say sk; sl; sm and sn, with k 6� l 6� m 6� n(mod 4),
contain all bits of the master key. From the last line of the above series of steps,
KX [i] depends on s2 and s6. Tracing back through this series of steps it is easy
to see that s6 depends on s5; s3; s1 and s0 and that s5 is related to s3; s1 and
s4. Hence, s6 depends on at least s0; s1 and s3. Thus, KX [i] depends at least
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on s0; s1; s2 and s3, and since 0 6� 1 6� 2 6� 3(mod 4);KX [i] depends on all bits
of the master key. Thus, all round subkeys depend on all bits of the master key.
This puts the HPC cipher in the 2B class.

Because the 'spice' is not necessarily a secret key, it has been deliberately
omitted from this discussion.

LOKI97

The master key, K is initialised into four, 64-bit words, K0
1 jK

0
2 jK

0
3 jK

0
4 , as fol-

lows.
256-bit K = K1jK2jK3jK4 yields K

0
1 jK

0
2 jK

0
3 jK

0
4 = K1jK2jK3jK4.

192-bit K = K1jK2jK3 yields K0
1 jK

0
2 jK

0
3 jK

0
4 = K1jK2jK3jf(K1;K2) where

f is a non-linear function used in the encryption process.
128-bit K = K1jK2 yields K

0
1 jK

0
2 jK

0
3 jK

0
4 = K1jK2jf(K2;K1)jf(K1;K2).

These initialised keys are then processed as follows to yield forty-eight, 64-bit
round subkeys, SKi.

For i = 1; � � � ; 48

Ki
1 = Ki�1

4 � gi(K
i�1
1 ;Ki�1

3 ;Ki�1
2 ) (2)

SKi = Ki
1

Ki
4 = Ki�1

3

Ki
3 = Ki�1

2

Ki
2 = Ki�1

1

Next i
Note that gi(K1;K3;K2) = f(K1 +K3 + �i;K2) where � is a constant and f is
a function used in the cipher.

Knowledge of SKi does not reveal any bits of previous or subsequent round
subkeys, as these are dependent on at least other three other unknown subkeys
or initialised master keys. Further, the generation of subkey SK1 involves all
bits of the master key as per equation 2. Since the generation of subkey SKi

depends on subkey SKi�1; SKi ultimately depends on SK1 and hence on all
bits of the master key. Thus, LOKI97 is a 2B cipher.

MAGENTA

For a master key, K, of one hundred and twenty-eight bits, this cipher has six
rounds under the control of the master key considered as two, 64-bit blocks, K1

and K2. In rounds one, two, �ve and six of the encryption process, K1 is used.
In rounds four and �ve, K2 is used.

In the 192-bit version of K = K1jK2jK3, Ki is used in rounds i and 7� i.
In the 256-bit version, K = K1jK2jK3jK4, and the cipher has eight rounds

with Ki being used in rounds i and 9� i. Clearly, knowledge of a round subkey
yields immediately bits of the master key, as in DES. Thus, MAGENTA is a
1B cipher.
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MARS

In this cipher, forty, 32-bit subkeys are required. An array, A, of forty-seven,
32-bit words is initialised using an n-word master key, k, as follows.

For i = �7;�6; � � � ;�1,
A[i] = S[i+ 7]

Next i
where S[j] is the j'th entry of a �xed and known S-box.

For i = 1; 2; � � � ; 38,
A[i] = ((A[i� 7]�A[i� 2])� 3)� k[i mod n]� i

Next i
A[39] = n

This initialised array is further stirred as follows.
For j = 1; 2; � � � ; 7

For i = 1; 2; � � � ; 39
Aj [i] = (Aj�1[i] + S9[A

j�1[i� 1]])� 9
Next i
Aj [0] = (Aj�1[0] + S9[A

j [39]])� 9
Next j

Note that S9[x] is the S-box entry indexed by the nine LSB of x. The subkeys
are then created as follows.

For i = 0; 1; 2; � � � ; 39
A[i] becomes subkey K[7i mod 40]

Next i
Consider now the case of n = 8, that is a 256-bit master key. In the initial-

ization of array A, A[i] depends on array words A[i� 7] and A[i� 2] as well as
master key word k[i mod 8]. A careful analysis shows that not until the creation
of A[13] are the elements of array A dependent on all eight words of the master
key. Subsequent elements, with the exception of A[39], are also dependent on
all master key words. A[39] does not depend on any bits of the master key at
all.

Now suppose an attacker knows K[i] = A(7)[j] = (A(6)[j]�S
[
9A

(6)[j�1]])�
9; for some j. There exists keys K[h] and K[g] such that K[h] = A(7)[j � 1] =

(A(6)[j� 1]�S
(6)
9 [A[j � 2]])� 9 for some j, and K[g] = A(7)[j +1] = (A(6)[j +

1] � S
[
9A

(6)[j]]) � 9 for some j. Knowledge of K[i] does not reveal A(6)[j] or
S9[A

(6)[j � 1]] which are components of K[h] and K[g]. Neither does it reveal
any information on A(7)[j� 1] or A(6)[j+1], the other components of K[h] and
K[g] respectively. Similarly, knowledge of K[i] does not reveal any information
about the master key.

The 7-round stirring process esentially combines successive entries in arrayA
to create a new arrayA(7). After the �rst round of stirring, only elements T (1)[1]
through to T (1)[6] inclusive do not depend on all bits of the master key. In each
of the remaining six rounds of stirring, T (2)[1]; T (3)[2]; T (4)[3]; T (5)[4]; T (6)[5] and
T (7)[6] successively come to depend on all master key bits. Hence, all subkeys
depend on all bits of the master key. Thus, MARS is a 2B cipher.

RC6

This cipher has a precursor named RC5 [?]. The key schedule of RC6 is identical
to that of RC5 with the exception that a total of 2r + 4 subkeys are required
for RC6 while RC5 requires only 2r + 2 subkeys(r is the number of rounds of
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the cipher). The proposed number of rounds of RC6 is twenty, so the number
of subkeys required is forty-four. The subkeys are generated as follows.

From a master key of sixteen, twenty-four or thirty-two bytes, an array L

of four, six or eight, 32-bit words is constructed. A second array S of forty-
four, 32-bit words is initialised by known constants. The following loop is then
executed one hundred and thirty-two times(3 � 44), after the variables i; j; A
and B are initialised to zero.

For s = 1 to 132
S[i] = (S[i] +A+B)� 3
A = S[i]
L[j] = (L[j] +A+B)� (A+B)
B = L[j]
i � (i+ 1)(mod 44)
j � (j + 1)(mod c)

Next s
Note that c = 4; 6 or 8 when the master key used is 128-bit, 192-bit or 256-bit
respectively.

Suppose now that round key S3[i] = (S2[i]+A+B)� 3 is known. From this
knowledge, it is not possible to determine any of the quantities that are involved
in the calculation of S3[i]. Even if these quantities were known, it would not
be possible to determine, from a knowledge of these, S3[i + 1] or S3[i � 1], as
the quantities which form these are related to those of S3[i] in a very di�cult
to invert way. Hence, knowledge of a round subkey does not yield any bits of
any other round subkey or the master key.

Further, each entry in the array S is updated three times in the above loop.
At the end of the �rst update, call it S1, corresponding to s = 44; S1[0] to
S1[7] inclusive are the only elements of array S1 that are not dependent on all
elements of the array L, that is, all elements of the master key. By the end of
the second pass, all elements of S2 are dependent on all elements of the master
key. It follows that RC6 is a 2B cipher.

Rijndael

This cipher stores its master key, K, in a 4 � i array of bytes, where i = 4; 6
or 8 when K is a 128-bit, 192-bit or 256-bit key respectively. Given that the
AES standard supports a 128-bit block size, the number of subkeys required is
128
4 � (r+1), where r is the number of rounds. For a 128-bit master key, r = 10,
for a 192-bit master key, r = 12 and for a 256-bit master key, r = 14.

An expanded key, Ke, is formed from the 256-bit master key array, Ax;y; 0 �
x � 3; 0 � y � 7 as follows. Note that elements of array A are bytes.

An array, W , with 4 � (14 + 1)(= 60) elements is constructed by setting
W [t]; t = 0; 1; � � � ; 7 to be successively equal to the four bytes of the master
key, A0;t; A1;t; A2;t; A3;t. Subsequent elements of array W are constructed by
the recursive relationship:

For j = 8; j < 60 and j incremented by 8
W [j] =W [j � 8]� f(W [j � 1])� g(cj)

For l = 1; 2 and 3
W [l + j] =W [l + j � 8]�W [l + j � 1]

Next l
W [j + 4] =W [j � 4]� h(W [j + 3])

For l = 5; 6 and 7
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W [l + j] =W [l + j � 8]�W [l + j � 1]
Next l

The functions f; g and h are functions associated with encryption and de-
cryption and cj is a deterministic constant.

For x = 0; 1; 2; � � � ; 14, round subkey x is given array entries W [8x] through
to W [8x+ 7].

Now suppose that round subkeyKSx is known. It follows thatW [8x];W [8x+
1]; � � � ;W [8x+7] are known. Subkey KSx+1 consists of array elements W [8x+
8];W [8x+ 9]; � � � ;W [8x+ 15]. Now

W [8x+ 8] =W [8x]� f(W [8x+ 7]� g(cx)) (3)

All of the quantities on the right hand side of equation 3 are known since they
are from the known subkey x or are constants. Hence W [8x + 8] is known.
Since W [8x+p]; p = 9; 10; � � � ; 15 depends in a simple way on W [8x+p�1] and
W [8x+ p� 8] which is known from round subkey RKx, calculating W [8x + p]
is easy. Hence, knowing subkey RKx enables subkey RKx+1 to be easily de-
termined. In fact, knowing subkey RKx enables all subsequent subkeys to be
determined. The conclusion is that the 256-bit master key version of the cipher
Rijndael is 1C.

SAFER+

For 128-bit, 192-bit and 256-bit master keysK, the respective number of rounds
in the cipher is eight, twelve and sixteen. The number of subkeys required is
respectively seventeen, twenty-�ve and thirty-three. An analysis of the case
when a 256-bit master key will be presented.

Firstly, thirty-three, 16-byte bias words, Bi, are created as follows.
For i = 0; 1; � � � ; 15

B
j
i � 45(45

17i+j+18mod 257) (mod 257) (4)

Next i,
where Bj

i is the j'th byte of bias word Bi and j = 0; 1; � � � ; 15. If the value of

B
j
i , calculated in equation 4, is 256, then Bj

i is set to zero. The remaining bias
words B17 to B32 inclusive are calculated as follows.

For i = 17; 18; � � � ; 32
Bj
i � 4517i+j+18(mod 257)

Next i
Note that B0 is a dummy and is not used at all.

A 33-byte word, Ke, is initialised by concatenating the thirty-two bytes of
the master key K and the byte formed by the XOR sum of the corresponding
bits of the thirty-two bytes of the master key. This last byte is known as the
parity byte. The bytes of Ke will be denoted by b0; b1; � � � ; b31; b32. Round i uses
two, 16-byte subkeys, Ki and Ki+1. The round one subkey, K0, is calculated as
follows.

K0 = b0jb1j � � � jb15:
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The concatenation of xi through to xj will be written as Cj
k=i(xk). Hence

K0 = C15
k=0(bk). Subsequent subkeys are generated as follows.

For i = 1; 2; � � � ; 32
For j = 0; 1; � � � ; 32

bj = bj � 3
Next j

Ki = C
(i+15) mod 33
k=i (bk +B

(k�i) mod 33
i )( mod 256)

Next i.

Now suppose round subkey, Ki, is known. Hence,

C
(i+15) mod 33
k=i (bk + B

(k�i) mod 33
i )(mod 256)

is known. Since all the biases Bi are predetermined constants, bk is simply

calculated as (K
(k�i) mod 33
i � B

(k�i) mod 33
i )(mod 256)). Thus, bytes bi to

b(i+15) mod 33 are known. Right shifting each of these bytes by three bits, yields
�fteen of the sixteen bytes used in in the calculation of Ki�1. Left shifting
these known bytes by three bits will yield �fteen of the sixteen bytes used in the
calculation of Ki+1. Thus, �fteen bytes of subkeys Ki�1 and Ki+1 are easily
determined. In fact, if the known bytes of Ki are right shifted by an amount
3i, then either �fteen or sixteen bytes of the master key will be known. Sixteen
will be known if b33 is not one of the sixteen known bytes of Ki. On the other
hand, if b33 is one of the known bytes of Ki, then �fteen bytes of the master key
can be determined. Hence SAFER+ with a 256-bit master key is a 1C cipher.
Serpent

This cipher requires thirty-three, 128-bit, round subkeys, and these are created
from one hundred and thirty-two, 32-bit, interim words which are generated
from the master key, K. If the master key is not two hundred and �fty-six bits
in length, it is padded until it is. This padded master key, Kp, can be thought
of as eight, 32-bit words labelled W�8;W�7; � � � ;W�1. The one hundred and
thirty-two, interim words are calculated as follows.

For i = 0; 1; � � � ; 131

Wi = (Wi�8 �Wi�5 �Wi�3 �Wi�1 � �� i)� 11 (5)

Next i,
where � is a known constant.

Now suppose that subkey, Ki, is known.
Hence X = (W4i;W4i+1;W4i+2;W4i+3) is known. Each component of X is
essentially the XOR sum of three previously calculatedWj values. The removal
of the constants � and i from the calculation is trivial(see equation 5). Thus,
each component on its own does not reveal any information about any other
Wj 's and hence does not reveal any information about other round subkeys.
Further, the XOR linear combination of any number of the components of X ,
does not isolate any single Wj value used in another round subkey. Hence,
knowledge of a round subkey does not reveal any bits of other round subkeys
or the master key.

Now, round i subkey, Ki, is the concatenation of k4i; k4i+1; k4i+2; k4i+3,
where

(k4i; k4i+1; k4i+2; k4i+3) = S(3�i) mod 7(W4i;W4i+1;W4i+2;W4i+3) (6)
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and Sx is an S-box of the cipher. From equation 6, the round i subkey, Ki, de-
pends on W4i;W4i+1;W4i+2;W4i+3. From equation 5 the following three state-
ments are true.
1. W0 depends on key words W�8;W�5;W�3 and W�1.
2. W1 depends on key words W�7;W�4;W�2 and W0 and since the dependen-
cies of W0 are known from 1, W1 depends on W�8;W�7;W�5;W�4;W�3;W�2

and W�1.
3. W2 depends on key wordsW�6;W�3;W�1 andW1 and since the dependencies
ofW1 are known from 2, W2 depends onW�8;W�7;W�6;W�5;W�4;W�3;W�2

and W�1, that is all bits of the master key.

Since from equation 5, Wi depends on key word Wi�1; for i > 2;Wi will
ultimely depend on W2 and hence on all bits of the master key. Since every
subkey Ki is dependent on a Wi; i > 2, all subkeys are dependent on all bits of
the master key. This analysis classes Serpent as 2B.

Two�sh

Two�sh employs sixteen rounds with two, 32-bit subkeys in each round. Eight
other subkeys are required. Four are added to the plaintext before encryption
and the other four are added to the output of the last round of encryption.
Thus, forty round subkeys are required. As in previous ciphers, the case of a
256-bit master key will be examined in detail.

Master key K is split into eight, 32-bit words, K0;K1; � � � ;K7 where Ki =
m4i+3jm4i+2jm4i+1jm4i and mj is the j'th byte of K. Let Me = K0jK2jK4jK6,
the concatenation of the even index Kj 's, and Mo = K1jK3jK5jK7, the con-
catenation of the odd index Kj 's. De�ne constants Ai and Bi as follows.

Ai = h(2i�;Me)

Bi = ROL(h((2i+ 1)�;Mo); 8)

Note that � is a de�ned constant, h is a function used in the cipher and
ROL(x; y) means rotate left, the quantity x, by y bits.

The forty, round subkeys, Ki, are created as follows.
For i = 0; 1; � � � ; 19

K2i = (Ai +Bi)(mod 232) (7)

K2i+1 = ROL((Ai + 2Bi)(mod 232); 9) (8)

Next i
Suppose Kj is known. From equations 7 and 8, there is no obvious way to

determine Ai and Bi and hence Me and Mo, which are required, if other round
subkeys are to be found from a knowledge of Kj . Thus, knowledge of a round
subkey does not enable bits of other round subkeys or the master key to be
determined.

Clearly, each round subkey is a function of Ai and Bi which respectively are
functions of Me and Mo. Me and Mo encompass all bits of the master key, so
it follows likewise for Ai and Bi. Hence, all round subkeys depend on all bits of
the master key. It is now possible to classify Two�sh as a 2B cipher.

However, it is worth noting that if two successive subkeys, K2i and K2i+1

are known, subtracting(mod 232) K2i from ROR(K2i+1; 9) will give Bi. From
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this, Ai can be determined from equation 8. With Ai and Bi now known, it is
possible to invert the function h and hence determine Me and Mo which com-
prise the master key.

3 Conclusion and Future Research

This paper is in response to calls by NIST for the analysis of the strengths and
weaknesses of the AES candidates. It concentrates solely on the key schedules
and makes no comment on the strengths and weaknesses of the algorithms or
other aspects of the ciphers. The majority of candidates fall into the 2B, key
schedule classi�cation and these exhibit stronger key schedules than those that
do not. For those in the other classi�cations, it is recommended that they be
upgraded to the 2B category. In some cases, this is easily achieved as explained
in the DEAL cipher. For the others, the natural extension of this paper is to
upgrade them to the 2B class, and this is planned.
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